The Parker AIF - a play with variables
Note
Click here to download the full example code
====================================== The Parker AIF - a play with variables ======================================
Simulating a Parker AIF with different settings.
Import necessary packages
Generate synthetic AIF with default settings and plot the result.
# Define time points in units of seconds - in this case we use a time
# resolution of 0.5 sec and a total duration of 6 minutes.
t = np.arange(0, 6 * 60, 0.5)
# Create an AIF with default settings
ca = osipi.aif_parker(t)
# Plot the AIF over the full range
plt.plot(t, ca, "r-")
plt.plot(t, 0 * t, "k-")
plt.xlabel("Time (sec)")
plt.ylabel("Plasma concentration (mM)")
plt.show()
The bolus arrival time (BAT) defaults to 0s. What happens if we change it? Let's try, by changing it in steps of 30s:
ca = osipi.aif_parker(t, BAT=0)
plt.plot(t, ca, "b-", label="BAT = 0s")
ca = osipi.aif_parker(t, BAT=30)
plt.plot(t, ca, "r-", label="BAT = 30s")
ca = osipi.aif_parker(t, BAT=60)
plt.plot(t, ca, "g-", label="BAT = 60s")
ca = osipi.aif_parker(t, BAT=90)
plt.plot(t, ca, "m-", label="BAT = 90s")
plt.xlabel("Time (sec)")
plt.ylabel("Plasma concentration (mM)")
plt.legend()
plt.show()
# Choose the last image as a thumbnail for the gallery
# sphinx_gallery_thumbnail_number = -1
Total running time of the script: ( 0 minutes 0.721 seconds)
Download Python source code: plot_aif_parker.py