The Extended Tofts model
Note
Click here to download the full example code
==================== The Extended Tofts model ====================
Simulating tissue concentrations from extended Tofts model with different settings.
Import necessary packages
Generate Parker AIF with default settings.
# Define time points in units of seconds - in this case we use a time
# resolution of 1 sec and a total duration of 6 minutes.
t = np.arange(0, 6 * 60, 1)
# Create an AIF with default settings
ca = osipi.aif_parker(t)
Plot the tissue concentrations for an extracellular volume fraction of 0.2 and 3 different plasma volumes of 0.05, 0.2 and 0.6
Ktrans = 0.2 # in units of 1/min
ve = 0.2 # volume fraction between 0 and 1
vp = [0.05, 0.2, 0.6] # volume fraction between 0 and 1
ct = osipi.extended_tofts(t, ca, Ktrans, ve, vp[0])
plt.plot(t, ct, "b-", label=f"vp = {vp[0]}")
ct = osipi.extended_tofts(t, ca, Ktrans, ve, vp[1])
plt.plot(t, ct, "g-", label=f"vp = {vp[1]}")
ct = osipi.extended_tofts(t, ca, Ktrans, ve, vp[2])
plt.plot(t, ct, "m-", label=f"vp = {vp[2]}")
plt.xlabel("Time (sec)")
plt.ylabel("Tissue concentration (mM)")
plt.legend()
plt.show()
Comparing different discretization methods for an extracellular volume fraction of 0.2, Ktrans of 0.2 /min and vp of 0.05
ct = osipi.extended_tofts(t, ca, Ktrans, ve, vp[0]) # Defaults to Convolution
plt.plot(t, ct, "b-", label="Convolution")
ct = osipi.extended_tofts(t, ca, Ktrans, ve, vp[0], discretization_method="exp")
plt.plot(t, ct, "g-", label="Exponential Convolution")
plt.title(f"Ktrans = {Ktrans} /min")
plt.xlabel("Time (sec)")
plt.ylabel("Tissue concentration (mM)")
plt.legend()
plt.show()
# Choose the last image as a thumbnail for the gallery
# sphinx_gallery_thumbnail_number = -1
Total running time of the script: ( 0 minutes 0.208 seconds)
Download Python source code: plot_extended_tofts.py