Source code for src.standardized.IAR_LU_modified_topopro

import numpy as np
from dipy.core.gradients import gradient_table
from src.wrappers.OsipiBase import OsipiBase
from src.original.IAR_LundUniversity.ivim_fit_method_modified_topopro import IvimModelTopoPro


[docs] class IAR_LU_modified_topopro(OsipiBase): """ Bi-exponential fitting algorithm by Ivan A. Rashid, Lund University """ # I'm thinking that we define default attributes for each submission like this # And in __init__, we can call the OsipiBase control functions to check whether # the user inputs fulfil the requirements # Some basic stuff that identifies the algorithm id_author = "Ivan A. Rashid, LU" id_algorithm_type = "Bi-exponential fit" id_return_parameters = "f, D*, D" id_units = "seconds per milli metre squared or milliseconds per micro metre squared" # Algorithm requirements required_bvalues = 4 required_thresholds = [0,0] # Interval from "at least" to "at most", in case submissions allow a custom number of thresholds required_bounds = False required_bounds_optional = True # Bounds may not be required but are optional required_initial_guess = False required_initial_guess_optional = True # Supported inputs in the standardized class supported_bounds = True supported_initial_guess = False supported_thresholds = False supported_dimensions = 1 supported_priors = False def __init__(self, bvalues=None, thresholds=None, bounds=None, initial_guess=None, weighting=None, stats=False): """ Everything this algorithm requires should be implemented here. Number of segmentation thresholds, bounds, etc. Our OsipiBase object could contain functions that compare the inputs with the requirements. """ super(IAR_LU_modified_topopro, self).__init__(bvalues, thresholds, bounds, initial_guess) if bounds is not None: print('warning, bounds from wrapper are not (yet) used in this algorithm') self.use_bounds = False self.use_initial_guess = False # Check the inputs # Initialize the algorithm if self.bvalues is not None: bvec = np.zeros((self.bvalues.size, 3)) bvec[:,2] = 1 gtab = gradient_table(self.bvalues, bvec, b0_threshold=0) self.IAR_algorithm = IvimModelTopoPro(gtab, bounds=self.bounds, rescale_results_to_mm2_s=True) else: self.IAR_algorithm = None
[docs] def ivim_fit(self, signals, bvalues, **kwargs): """Perform the IVIM fit Args: signals (array-like) bvalues (array-like, optional): b-values for the signals. If None, self.bvalues will be used. Default is None. Returns: _type_: _description_ """ if self.IAR_algorithm is None: if bvalues is None: bvalues = self.bvalues else: bvalues = np.asarray(bvalues) bvec = np.zeros((bvalues.size, 3)) bvec[:,2] = 1 gtab = gradient_table(bvalues, bvec, b0_threshold=0) self.IAR_algorithm = IvimModelTopoPro(gtab, bounds=self.bounds, rescale_results_to_mm2_s=True) fit_results = self.IAR_algorithm.fit(signals) #f = fit_results.model_params[1] #Dstar = fit_results.model_params[2] #D = fit_results.model_params[3] #return f, Dstar, D results = {} results["f"] = fit_results.model_params[1] results["Dp"] = fit_results.model_params[2] results["D"] = fit_results.model_params[3] results = self.D_and_Ds_swap(results) return results