src.standardized package
Submodules
src.standardized.ASD_MemorialSloanKettering_QAMPER_IVIM module
src.standardized.ETP_SRI_LinearFitting module
- class src.standardized.ETP_SRI_LinearFitting.ETP_SRI_LinearFitting(bvalues=None, thresholds=None, bounds=None, initial_guess=None, weighting=None, stats=False)[source]
Bases:
OsipiBaseWIP Implementation and execution of the submitted algorithm
- id_algorithm_type = 'Linear fit'
- id_author = 'Eric T. Peterson, SRI'
- id_return_parameters = 'f, D*, D'
- id_units = 'seconds per milli metre squared'
- ivim_fit(signals, bvalues=None, linear_fit_option=False, **kwargs)[source]
Perform the IVIM fit
- Args:
signals (array-like) bvalues (array-like, optional): b-values for the signals. If None, self.bvalues will be used. Default is None. linear_fit_option (bool, optional): This fit has an option to only run a linear fit. Defaults to False.
- Returns:
_type_: _description_
- required_bounds = False
- required_bounds_optional = True
- required_bvalues = 3
- required_initial_guess = False
- required_initial_guess_optional = False
- required_thresholds = [0, 1]
- supported_bounds = False
- supported_dimensions = 1
- supported_initial_guess = False
- supported_priors = False
- supported_thresholds = True
src.standardized.IAR_LU_biexp module
- class src.standardized.IAR_LU_biexp.IAR_LU_biexp(bvalues=None, thresholds=None, bounds=None, initial_guess=None, weighting=None, stats=False)[source]
Bases:
OsipiBaseBi-exponential fitting algorithm by Ivan A. Rashid, Lund University
- id_algorithm_type = 'Bi-exponential fit'
- id_author = 'Ivan A. Rashid, LU'
- id_return_parameters = 'f, D*, D'
- id_units = 'seconds per milli metre squared or milliseconds per micro metre squared'
- ivim_fit(signals, bvalues, **kwargs)[source]
Perform the IVIM fit
- Args:
signals (array-like) bvalues (array-like, optional): b-values for the signals. If None, self.bvalues will be used. Default is None.
- Returns:
_type_: _description_
- ivim_fit_full_volume(signals, bvalues, **kwargs)[source]
Perform the IVIM fit
- Args:
signals (array-like) bvalues (array-like, optional): b-values for the signals. If None, self.bvalues will be used. Default is None.
- Returns:
_type_: _description_
- required_bounds = False
- required_bounds_optional = True
- required_bvalues = 4
- required_initial_guess = False
- required_initial_guess_optional = True
- required_thresholds = [0, 0]
- supported_bounds = True
- supported_dimensions = 1
- supported_initial_guess = True
- supported_priors = False
- supported_thresholds = False
src.standardized.IAR_LU_modified_mix module
- class src.standardized.IAR_LU_modified_mix.IAR_LU_modified_mix(bvalues=None, thresholds=None, bounds=None, initial_guess=None, weighting=None, stats=False)[source]
Bases:
OsipiBaseBi-exponential fitting algorithm by Ivan A. Rashid, Lund University
- id_algorithm_type = 'Bi-exponential fit'
- id_author = 'Ivan A. Rashid, LU'
- id_return_parameters = 'f, D*, D'
- id_units = 'seconds per milli metre squared or milliseconds per micro metre squared'
- ivim_fit(signals, bvalues, **kwargs)[source]
Perform the IVIM fit
- Args:
signals (array-like) bvalues (array-like, optional): b-values for the signals. If None, self.bvalues will be used. Default is None.
- Returns:
_type_: _description_
- required_bounds = False
- required_bounds_optional = True
- required_bvalues = 4
- required_initial_guess = False
- required_initial_guess_optional = True
- required_thresholds = [0, 0]
- supported_bounds = True
- supported_dimensions = 1
- supported_initial_guess = False
- supported_priors = False
- supported_thresholds = False
src.standardized.IAR_LU_modified_topopro module
- class src.standardized.IAR_LU_modified_topopro.IAR_LU_modified_topopro(bvalues=None, thresholds=None, bounds=None, initial_guess=None, weighting=None, stats=False)[source]
Bases:
OsipiBaseBi-exponential fitting algorithm by Ivan A. Rashid, Lund University
- id_algorithm_type = 'Bi-exponential fit'
- id_author = 'Ivan A. Rashid, LU'
- id_return_parameters = 'f, D*, D'
- id_units = 'seconds per milli metre squared or milliseconds per micro metre squared'
- ivim_fit(signals, bvalues, **kwargs)[source]
Perform the IVIM fit
- Args:
signals (array-like) bvalues (array-like, optional): b-values for the signals. If None, self.bvalues will be used. Default is None.
- Returns:
_type_: _description_
- required_bounds = False
- required_bounds_optional = True
- required_bvalues = 4
- required_initial_guess = False
- required_initial_guess_optional = True
- required_thresholds = [0, 0]
- supported_bounds = True
- supported_dimensions = 1
- supported_initial_guess = False
- supported_priors = False
- supported_thresholds = False
src.standardized.IAR_LU_segmented_2step module
- class src.standardized.IAR_LU_segmented_2step.IAR_LU_segmented_2step(bvalues=None, thresholds=None, bounds=None, initial_guess=None)[source]
Bases:
OsipiBaseBi-exponential fitting algorithm by Ivan A. Rashid, Lund University
- id_algorithm_type = 'Segmented bi-exponential fit'
- id_author = 'Ivan A. Rashid, LU'
- id_return_parameters = 'f, D*, D'
- id_units = 'seconds per milli metre squared or milliseconds per micro metre squared'
- ivim_fit(signals, bvalues, thresholds=None, **kwargs)[source]
Perform the IVIM fit
- Args:
signals (array-like) bvalues (array-like, optional): b-values for the signals. If None, self.bvalues will be used. Default is None.
- Returns:
_type_: _description_
- required_bounds = False
- required_bounds_optional = True
- required_bvalues = 4
- required_initial_guess = False
- required_initial_guess_optional = True
- required_thresholds = [0, 0]
- supported_bounds = True
- supported_dimensions = 1
- supported_initial_guess = True
- supported_priors = False
- supported_thresholds = True
src.standardized.IAR_LU_segmented_3step module
- class src.standardized.IAR_LU_segmented_3step.IAR_LU_segmented_3step(bvalues=None, thresholds=None, bounds=None, initial_guess=None, weighting=None, stats=False)[source]
Bases:
OsipiBaseBi-exponential fitting algorithm by Ivan A. Rashid, Lund University
- id_algorithm_type = 'Segmented bi-exponential fit'
- id_author = 'Ivan A. Rashid, LU'
- id_return_parameters = 'f, D*, D'
- id_units = 'seconds per milli metre squared or milliseconds per micro metre squared'
- ivim_fit(signals, bvalues, **kwargs)[source]
Perform the IVIM fit
- Args:
signals (array-like) bvalues (array-like, optional): b-values for the signals. If None, self.bvalues will be used. Default is None.
- Returns:
_type_: _description_
- required_bounds = False
- required_bounds_optional = True
- required_bvalues = 4
- required_initial_guess = False
- required_initial_guess_optional = True
- required_thresholds = [0, 0]
- supported_bounds = True
- supported_dimensions = 1
- supported_initial_guess = True
- supported_priors = False
- supported_thresholds = False
src.standardized.IAR_LU_subtracted module
- class src.standardized.IAR_LU_subtracted.IAR_LU_subtracted(bvalues=None, thresholds=None, bounds=None, initial_guess=None)[source]
Bases:
OsipiBaseBi-exponential fitting algorithm by Ivan A. Rashid, Lund University
- id_algorithm_type = 'Segmented bi-exponential fit'
- id_author = 'Ivan A. Rashid, LU'
- id_return_parameters = 'f, D*, D'
- id_units = 'seconds per milli metre squared or milliseconds per micro metre squared'
- ivim_fit(signals, bvalues, **kwargs)[source]
Perform the IVIM fit
- Args:
signals (array-like) bvalues (array-like, optional): b-values for the signals. If None, self.bvalues will be used. Default is None.
- Returns:
_type_: _description_
- required_bounds = False
- required_bounds_optional = True
- required_bvalues = 4
- required_initial_guess = False
- required_initial_guess_optional = True
- required_thresholds = [0, 0]
- supported_bounds = True
- supported_dimensions = 1
- supported_initial_guess = True
- supported_priors = False
- supported_thresholds = False
src.standardized.IVIM_NEToptim module
- class src.standardized.IVIM_NEToptim.IVIM_NEToptim(SNR=None, bvalues=None, thresholds=None, bounds=None, initial_guess=None, fitS0=True, traindata=None, n=5000000)[source]
Bases:
OsipiBaseBi-exponential fitting algorithm by Oliver Gurney-Champion, Amsterdam UMC
- accepted_dimensions = 1
- id_algorithm_type = 'Deep learnt bi-exponential fit'
- id_author = 'Oliver Gurney Champion, Amsterdam UMC'
- id_return_parameters = 'f, D*, D, S0'
- id_units = 'seconds per milli metre squared or milliseconds per micro metre squared'
- initialize(bounds, initial_guess, fitS0, traindata, SNR, n)[source]
Placeholder for subclass initialization
- ivim_fit(signals, bvalues, **kwargs)[source]
Perform the IVIM fit
- Args:
signals (array-like) bvalues (array-like): b-values for the signals. If None, self.bvalues will be used. Default is None.
- Returns:
_type_: _description_
- ivim_fit_full_volume(signals, bvalues, retrain_on_input_data=False, **kwargs)[source]
Perform the IVIM fit
- Args:
signals (array-like) bvalues (array-like): b-values for the signals. If None, self.bvalues will be used. Default is None.
- Returns:
_type_: _description_
- required_bounds = False
- required_bounds_optional = True
- required_bvalues = 4
- required_initial_guess = False
- required_initial_guess_optional = False
- required_thresholds = [0, 0]
- reshape_to_voxelwise(data)[source]
reshapes multi-D input (spatial dims, bvvalue) data to 2D voxel-wise array Args:
data (array): mulit-D array (data x b-values)
- Returns:
out (array): 2D array (voxel x b-value)
- supported_bounds = True
- supported_initial_guess = False
- supported_thresholds = False
src.standardized.OGC_AmsterdamUMC_Bayesian_biexp module
- class src.standardized.OGC_AmsterdamUMC_Bayesian_biexp.OGC_AmsterdamUMC_Bayesian_biexp(bvalues=None, thresholds=None, bounds=None, initial_guess=None, fitS0=True, prior_in=None)[source]
Bases:
OsipiBaseBayesian Bi-exponential fitting algorithm by Oliver Gurney-Champion, Amsterdam UMC
- id_algorithm_type = 'Bi-exponential fit'
- id_author = 'Oliver Gurney Champion, Amsterdam UMC'
- id_return_parameters = 'f, D*, D, S0'
- id_units = 'seconds per milli metre squared or milliseconds per micro metre squared'
- initialize(bounds=None, initial_guess=None, fitS0=True, prior_in=None, thresholds=None)[source]
Placeholder for subclass initialization
- ivim_fit(signals, bvalues, initial_guess=None, **kwargs)[source]
Perform the IVIM fit
- Args:
signals (array-like) bvalues (array-like, optional): b-values for the signals. If None, self.bvalues will be used. Default is None.
- Returns:
_type_: _description_
- ivim_fit_full_volume(signals, bvalues, njobs=4, **kwargs)[source]
Perform the IVIM fit Args:
signals (array-like) bvalues (array-like, optional): b-values for the signals. If None, self.bvalues will be used. Default is None.
- Returns:
_type_: _description_
- required_bounds = False
- required_bounds_optional = True
- required_bvalues = 4
- required_initial_guess = False
- required_initial_guess_optional = True
- required_thresholds = [0, 1]
- reshape_to_voxelwise(data)[source]
reshapes multi-D input (spatial dims, bvvalue) data to 2D voxel-wise array Args:
data (array): mulit-D array (data x b-values)
- Returns:
out (array): 2D array (voxel x b-value)
- supported_bounds = True
- supported_dimensions = 1
- supported_initial_guess = True
- supported_priors = True
- supported_thresholds = True
src.standardized.OGC_AmsterdamUMC_biexp module
- class src.standardized.OGC_AmsterdamUMC_biexp.OGC_AmsterdamUMC_biexp(bvalues=None, thresholds=None, bounds=None, initial_guess=None, fitS0=True)[source]
Bases:
OsipiBaseBi-exponential fitting algorithm by Oliver Gurney-Champion, Amsterdam UMC
- id_algorithm_type = 'Bi-exponential fit'
- id_author = 'Oliver Gurney Champion, Amsterdam UMC'
- id_return_parameters = 'f, D*, D, S0'
- id_units = 'seconds per milli metre squared or milliseconds per micro metre squared'
- ivim_fit(signals, bvalues, **kwargs)[source]
Perform the IVIM fit
- Args:
signals (array-like) bvalues (array-like, optional): b-values for the signals. If None, self.bvalues will be used. Default is None.
- Returns:
_type_: _description_
- required_bounds = False
- required_bounds_optional = True
- required_bvalues = 4
- required_initial_guess = False
- required_initial_guess_optional = True
- required_thresholds = [0, 0]
- supported_bounds = True
- supported_dimensions = 1
- supported_initial_guess = True
- supported_priors = False
- supported_thresholds = False
src.standardized.OGC_AmsterdamUMC_biexp_segmented module
- class src.standardized.OGC_AmsterdamUMC_biexp_segmented.OGC_AmsterdamUMC_biexp_segmented(bvalues=None, thresholds=150, bounds=None, initial_guess=None)[source]
Bases:
OsipiBaseSegmented bi-exponential fitting algorithm by Oliver Gurney-Champion, Amsterdam UMC
- id_algorithm_type = 'Segmented bi-exponential fit'
- id_author = 'Oliver Gurney Champion, Amsterdam UMC'
- id_return_parameters = 'f, D*, D, S0'
- id_units = 'seconds per milli metre squared or milliseconds per micro metre squared'
- ivim_fit(signals, bvalues, **kwargs)[source]
Perform the IVIM fit
- Args:
signals (array-like) bvalues (array-like, optional): b-values for the signals. If None, self.bvalues will be used. Default is None.
- Returns:
_type_: _description_
- required_bounds = False
- required_bounds_optional = True
- required_bvalues = 4
- required_initial_guess = False
- required_initial_guess_optional = True
- required_thresholds = [1, 1]
- supported_bounds = True
- supported_dimensions = 1
- supported_initial_guess = True
- supported_priors = False
- supported_thresholds = True
src.standardized.OJ_GU_bayesMATLAB module
src.standardized.OJ_GU_seg module
- class src.standardized.OJ_GU_seg.OJ_GU_seg(bvalues=None, thresholds=None, bounds=None, initial_guess=None, weighting=None, stats=False)[source]
Bases:
OsipiBaseSegmented fitting algorithm by Oscar Jalnefjord, University of Gothenburg
- id_algorithm_type = 'Segmented bi-exponential fit'
- id_author = 'Oscar Jalnefjord, GU'
- id_return_parameters = 'f, D*, D'
- id_units = 'mm2/s'
- ivim_fit(signals, bvalues=None)[source]
Perform the IVIM fit
- Args:
signals (array-like) bvalues (array-like, optional): b-values for the signals. If None, self.bvalues will be used. Default is None.
- Returns:
_type_: _description_
- required_bounds = False
- required_bounds_optional = False
- required_bvalues = 4
- required_initial_guess = False
- required_initial_guess_optional = False
- required_thresholds = [0, 0]
- supported_bounds = False
- supported_dimensions = 1
- supported_initial_guess = False
- supported_priors = False
- supported_thresholds = True
src.standardized.OJ_GU_segMATLAB module
src.standardized.PV_MUMC_biexp module
- class src.standardized.PV_MUMC_biexp.PV_MUMC_biexp(bvalues=None, thresholds=None, bounds=None, initial_guess=None, weighting=None, stats=False)[source]
Bases:
OsipiBaseBi-exponential fitting algorithm by Paulien Voorter, Maastricht University
- id_algorithm_type = 'Bi-exponential fit'
- id_author = 'Paulien Voorter MUMC'
- id_return_parameters = 'f, D*, D'
- id_units = 'seconds per milli metre squared or milliseconds per micro metre squared'
- ivim_fit(signals, bvalues=None)[source]
Perform the IVIM fit
- Args:
signals (array-like) bvalues (array-like, optional): b-values for the signals. If None, self.bvalues will be used. Default is None.
- Returns:
_type_: _description_
- required_bounds = False
- required_bounds_optional = True
- required_bvalues = 4
- required_initial_guess = False
- required_initial_guess_optional = True
- required_thresholds = [0, 0]
- supported_bounds = True
- supported_dimensions = 1
- supported_initial_guess = False
- supported_priors = False
- supported_thresholds = True
src.standardized.PvH_KB_NKI_IVIMfit module
- class src.standardized.PvH_KB_NKI_IVIMfit.PvH_KB_NKI_IVIMfit(bvalues=None, thresholds=None, bounds=None, initial_guess=None)[source]
Bases:
OsipiBaseBi-exponential fitting algorithm by Petra van Houdt and Koen Baas, NKI
- id_algorithm_type = 'Bi-exponential fit'
- id_author = 'Group Uulke van der Heide, NKI'
- id_return_parameters = 'f, D*, D'
- id_units = 'seconds per milli metre squared or milliseconds per micro metre squared'
- ivim_fit(signals, bvalues=None)[source]
Perform the IVIM fit
- Args:
signals (array-like) bvalues (array-like, optional): b-values for the signals. If None, self.bvalues will be used. Default is None.
- Returns:
_type_: _description_
- required_bounds = False
- required_bounds_optional = False
- required_bvalues = 4
- required_initial_guess = False
- required_initial_guess_optional = False
- required_thresholds = [0, 0]
- supported_bounds = False
- supported_dimensions = 1
- supported_initial_guess = False
- supported_priors = False
- supported_thresholds = False
src.standardized.Super_IVIM_DC module
- class src.standardized.Super_IVIM_DC.Super_IVIM_DC(bvalues=None, thresholds=None, bounds=None, initial_guess=None, fitS0=True, SNR=None)[source]
Bases:
OsipiBaseSupervised deep learnt fitting algorithm by Moti Freiman and Noam Korngut, TechnionIIT
- accepted_dimensions = 1
- id_algorithm_type = 'Supervised Deep learnt bi-exponential fit with data consistency'
- id_author = 'Moti Freiman and Noam Korngut, TechnIIT'
- id_return_parameters = 'f, D*, D, S0'
- id_units = 'seconds per milli metre squared or milliseconds per micro metre squared'
- initialize(bounds, initial_guess, fitS0, SNR, working_dir='/home/runner/work/TF2.4_IVIM-MRI_CodeCollection/TF2.4_IVIM-MRI_CodeCollection/docs', ivimnet_filename='ivimnet', super_ivim_dc_filename='super_ivim_dc')[source]
Placeholder for subclass initialization
- ivim_fit(signals, bvalues, **kwargs)[source]
Perform the IVIM fit
- Args:
signals (array-like) bvalues (array-like, optional): b-values for the signals. If None, self.bvalues will be used. Default is None.
- Returns:
results: a dictionary containing “d”, “f”, and “Dp”.
- ivim_fit_full_volume(signals, bvalues, retrain_on_input_data=False, **kwargs)[source]
Perform the IVIM fit
- Args:
signals (array-like) bvalues (array-like): b-values for the signals. If None, self.bvalues will be used. Default is None.
- Returns:
_type_: _description_
- required_bounds = False
- required_bounds_optional = True
- required_bvalues = 4
- required_initial_guess = False
- required_initial_guess_optional = True
- required_thresholds = [0, 0]
- reshape_to_voxelwise(data)[source]
reshapes multi-D input (spatial dims, bvvalue) data to 2D voxel-wise array Args:
data (array): mulit-D array (data x b-values)
- Returns:
out (array): 2D array (voxel x b-value)
- supported_bounds = True
- supported_initial_guess = True
- supported_thresholds = False
src.standardized.TCML_TechnionIIT_SLS module
- class src.standardized.TCML_TechnionIIT_SLS.TCML_TechnionIIT_SLS(bvalues=None, thresholds=None, bounds=None, initial_guess=None, fitS0=True)[source]
Bases:
OsipiBaseTCML_TechnionIIT_lsqlm fitting algorithm by Angeleene Ang, Moti Freiman and Noam Korngut, TechnionIIT
- accepted_dimensions = 1
- id_algorithm_type = 'Bi-exponential fit, segmented fitting'
- id_author = 'Angeleene Ang, Moti Freiman and Noam Korngut, TechnIIT'
- id_return_parameters = 'f, D*, D, S0'
- id_units = 'seconds per milli metre squared or milliseconds per micro metre squared'
- ivim_fit(signals, bvalues, **kwargs)[source]
Perform the IVIM fit
- Args:
signals (array-like) bvalues (array-like, optional): b-values for the signals. If None, self.bvalues will be used. Default is None.
- Returns:
_type_: _description_
- required_bounds = False
- required_bounds_optional = True
- required_bvalues = 4
- required_initial_guess = False
- required_initial_guess_optional = False
- required_thresholds = [0, 1]
- supported_bounds = True
- supported_initial_guess = False
- supported_thresholds = True
src.standardized.TCML_TechnionIIT_lsqBOBYQA module
- class src.standardized.TCML_TechnionIIT_lsqBOBYQA.TCML_TechnionIIT_lsqBOBYQA(bvalues=None, thresholds=None, bounds=None, initial_guess=None, fitS0=True)[source]
Bases:
OsipiBaseTCML_TechnionIIT_lsqBOBYQA fitting algorithm by Moti Freiman and Noam Korngut, TechnionIIT
- accepted_dimensions = 1
- id_algorithm_type = 'Bi-exponential fit, BOBYQO'
- id_author = 'Moti Freiman and Noam Korngut, TechnIIT'
- id_return_parameters = 'f, D*, D, S0'
- id_units = 'seconds per milli metre squared or milliseconds per micro metre squared'
- ivim_fit(signals, bvalues, **kwargs)[source]
Perform the IVIM fit
- Args:
signals (array-like) bvalues (array-like, optional): b-values for the signals. If None, self.bvalues will be used. Default is None.
- Returns:
_type_: _description_
- required_bounds = False
- required_bounds_optional = True
- required_bvalues = 4
- required_initial_guess = False
- required_initial_guess_optional = True
- required_thresholds = [0, 0]
- supported_bounds = True
- supported_initial_guess = True
- supported_thresholds = False
src.standardized.TCML_TechnionIIT_lsq_sls_BOBYQA module
- class src.standardized.TCML_TechnionIIT_lsq_sls_BOBYQA.TCML_TechnionIIT_lsq_sls_BOBYQA(bvalues=None, thresholds=None, bounds=None, initial_guess=None, fitS0=True)[source]
Bases:
OsipiBaseTCML_TechnionIIT_lsqlm fitting algorithm by Angeleene Ang, Moti Freiman and Noam Korngut, TechnionIIT
- accepted_dimensions = 1
- id_algorithm_type = 'Bi-exponential fit, SLS fit followed by Trust Region Reflective algorithm'
- id_author = 'Angeleene Ang, Moti Freiman and Noam Korngut, TechnIIT'
- id_return_parameters = 'f, D*, D, S0'
- id_units = 'seconds per milli metre squared or milliseconds per micro metre squared'
- ivim_fit(signals, bvalues, **kwargs)[source]
Perform the IVIM fit
- Args:
signals (array-like) bvalues (array-like, optional): b-values for the signals. If None, self.bvalues will be used. Default is None.
- Returns:
_type_: _description_
- required_bounds = False
- required_bounds_optional = True
- required_bvalues = 4
- required_initial_guess = False
- required_initial_guess_optional = False
- required_thresholds = [0, 1]
- supported_bounds = True
- supported_initial_guess = False
- supported_thresholds = True
src.standardized.TCML_TechnionIIT_lsq_sls_lm module
- class src.standardized.TCML_TechnionIIT_lsq_sls_lm.TCML_TechnionIIT_lsq_sls_lm(bvalues=None, thresholds=None, bounds=None, initial_guess=None, fitS0=True)[source]
Bases:
OsipiBaseTCML_TechnionIIT_lsqlm fitting algorithm by Angeleene Ang, Moti Freiman and Noam Korngut, TechnionIIT
- accepted_dimensions = 1
- id_algorithm_type = 'Bi-exponential, segmented as initaition, followed by Levenberg-Marquardt algorithm'
- id_author = 'Angeleene Ang, Moti Freiman and Noam Korngut, TechnIIT'
- id_return_parameters = 'f, D*, D, S0'
- id_units = 'seconds per milli metre squared or milliseconds per micro metre squared'
- ivim_fit(signals, bvalues, **kwargs)[source]
Perform the IVIM fit
- Args:
signals (array-like) bvalues (array-like, optional): b-values for the signals. If None, self.bvalues will be used. Default is None.
- Returns:
_type_: _description_
- required_bounds = False
- required_bounds_optional = True
- required_bvalues = 4
- required_initial_guess = False
- required_initial_guess_optional = False
- required_thresholds = [0, 1]
- supported_bounds = True
- supported_initial_guess = False
- supported_thresholds = True
src.standardized.TCML_TechnionIIT_lsq_sls_trf module
- class src.standardized.TCML_TechnionIIT_lsq_sls_trf.TCML_TechnionIIT_lsq_sls_trf(bvalues=None, thresholds=None, bounds=None, initial_guess=None, fitS0=True)[source]
Bases:
OsipiBaseTCML_TechnionIIT_lsqlm fitting algorithm by Angeleene Ang, Moti Freiman and Noam Korngut, TechnionIIT
- accepted_dimensions = 1
- id_algorithm_type = 'Bi-exponential fit, SLS fit followed by Trust Region Reflective algorithm'
- id_author = 'Angeleene Ang, Moti Freiman and Noam Korngut, TechnIIT'
- id_return_parameters = 'f, D*, D, S0'
- id_units = 'seconds per milli metre squared or milliseconds per micro metre squared'
- ivim_fit(signals, bvalues, **kwargs)[source]
Perform the IVIM fit
- Args:
signals (array-like) bvalues (array-like, optional): b-values for the signals. If None, self.bvalues will be used. Default is None.
- Returns:
_type_: _description_
- required_bounds = False
- required_bounds_optional = True
- required_bvalues = 4
- required_initial_guess = False
- required_initial_guess_optional = False
- required_thresholds = [0, 1]
- supported_bounds = True
- supported_initial_guess = False
- supported_thresholds = True
src.standardized.TCML_TechnionIIT_lsqlm module
- class src.standardized.TCML_TechnionIIT_lsqlm.TCML_TechnionIIT_lsqlm(bvalues=None, thresholds=None, bounds=None, initial_guess=None, fitS0=True)[source]
Bases:
OsipiBaseTCML_TechnionIIT_lsqlm fitting algorithm by Angeleene Ang, Moti Freiman and Noam Korngut, TechnionIIT
- accepted_dimensions = 1
- id_algorithm_type = 'Bi-exponential fit with Levenberg-Marquardt algorithm'
- id_author = 'Angeleene Ang, Moti Freiman and Noam Korngut, TechnIIT'
- id_return_parameters = 'f, D*, D, S0'
- id_units = 'seconds per milli metre squared or milliseconds per micro metre squared'
- ivim_fit(signals, bvalues, **kwargs)[source]
Perform the IVIM fit
- Args:
signals (array-like) bvalues (array-like, optional): b-values for the signals. If None, self.bvalues will be used. Default is None.
- Returns:
_type_: _description_
- required_bounds = False
- required_bounds_optional = True
- required_bvalues = 4
- required_initial_guess = False
- required_initial_guess_optional = True
- required_thresholds = [0, 0]
- supported_bounds = True
- supported_initial_guess = True
- supported_thresholds = False
src.standardized.TCML_TechnionIIT_lsqtrf module
- class src.standardized.TCML_TechnionIIT_lsqtrf.TCML_TechnionIIT_lsqtrf(bvalues=None, thresholds=None, bounds=None, initial_guess=None, fitS0=True)[source]
Bases:
OsipiBaseTCML_TechnionIIT_lsqlm fitting algorithm by Angeleene Ang, Moti Freiman and Noam Korngut, TechnionIIT
- accepted_dimensions = 1
- id_algorithm_type = 'Bi-exponential fit, Trust Region Reflective algorithm'
- id_author = 'Angeleene Ang, Moti Freiman and Noam Korngut, TechnIIT'
- id_return_parameters = 'f, D*, D, S0'
- id_units = 'seconds per milli metre squared or milliseconds per micro metre squared'
- ivim_fit(signals, bvalues, **kwargs)[source]
Perform the IVIM fit
- Args:
signals (array-like) bvalues (array-like, optional): b-values for the signals. If None, self.bvalues will be used. Default is None.
- Returns:
_type_: _description_
- required_bounds = False
- required_bounds_optional = True
- required_bvalues = 4
- required_initial_guess = False
- required_initial_guess_optional = True
- required_thresholds = [0, 0]
- supported_bounds = True
- supported_initial_guess = True
- supported_thresholds = False
src.standardized.TF_reference_IVIMfit module
- class src.standardized.TF_reference_IVIMfit.TF_reference_IVIMfit(bvalues=None, thresholds=200, bounds=None, initial_guess=None)[source]
Bases:
OsipiBaseBi-exponential fitting algorithm by IVIM Task force
- accepted_dimensions = 1
- id_algorithm_type = 'Bi-exponential fit'
- id_author = 'OSIPI IVIM TF'
- id_return_parameters = 'f, D*, D'
- id_units = 'seconds per milli metre squared or milliseconds per micro metre squared'
- ivim_fit(signals, bvalues=None)[source]
Perform the IVIM fit
- Args:
signals (array-like) bvalues (array-like, optional): b-values for the signals. If None, self.bvalues will be used. Default is None.
- Returns:
_type_: _description_
- required_bounds = False
- required_bounds_optional = True
- required_bvalues = 4
- required_initial_guess = False
- required_initial_guess_optional = False
- required_thresholds = [0, 1]
- supported_bounds = True
- supported_initial_guess = False
- supported_thresholds = True